Learn How Things Work with a Mechanical Engineering Major from SNHU
Prepare yourself for a future engineering career with a Bachelor of Science in Mechanical Engineering from Southern New Hampshire University. Mechanical Engineering is one of the broadest engineering disciplines, and SNHU's program will ensure that you gain the design, analysis, development, and manufacturing knowledge that you need to succeed in a variety of different fields.
You'll gain a thorough understanding of mechanical systems, and be prepared to enter the engineering field in the areas of advanced materials, robotics, thermal-fluid systems, power and energy systems, propulsion systems, manufacturing, and more.
SNHU has modelled its engineering programs in accordance with the international CDIO initiative, "an innovative educational framework for producing the next generation of engineers that stresses engineering fundamentals set in the context of Conceiving, Designing, Implementing, and Operating real-world systems and products." CDIO is a prominent engineering educational philosophy and is intended to achieve a fine balance between project-based, hands-on learning and traditional, theory-based engineering education. No matter your interest, the program will help you develop the necessary skills to begin your chosen career.
The Bachelor of Science in Mechanical Engineering at Southern New Hampshire University is accredited by the Engineering Accreditation Commission of ABET.
See Yourself Succeed in Mechanical Engineering
At SNHU, you'll have plenty of opportunities to put engineering theory into practice. SNHU's faculty and staff will work to provide you with experiential learning opportunities, and help you to find jobs and internships that allow you to get real, hands-on experience in the field. At SNHU, we are dedicated to providing you with the support and guidance that you need to find the education and career path that is right for you.
As a private, nonprofit university, SNHU has one mission - to help you see yourself succeed. The benefits of majoring in Mechanical Engineering at SNHU include:
- Supportive community. Join the SNHU campus community of students who are closely connected with faculty and staff dedicated to your success.
- Affordability. It’s our mission to make higher education more accessible. That’s why, SNHU is one of the most affordable private, nonprofit universities in New Hampshire.
- Accessible faculty. Learn from highly credentialed faculty members who are experts in their fields and interact with you in the classroom, dining hall, fitness center, and anywhere else you need them.
- Opportunity. Tap into our nationwide network of alumni and strong connections with employers for internship and career opportunities.
- Campus experience. Enjoy more than 50 student clubs, Division II athletics, and fun events on our 300-acre campus in Manchester, NH, named a "Best Place to Live" by Money magazine.
Program Educational Objectives
The following statements describe the career and professional accomplishments that the BS Mechanical Engineering program is preparing graduates to achieve within a few years of graduation:
- Professional careers in Mechanical Engineering or other disciplines utilizing the knowledge and problem-solving skills they developed in the SNHU Mechanical Engineering program;
- Increasing responsibility in technical and/or management areas;
- Recognition or affirmation from their managers and peers as effective and valued members of their work team;
- Increasing discernment and sensitivity in the consideration of global and societal contexts and consequences when making engineering decisions;
- Expansion of their professional, personal, and interpersonal skills and engagement in lifelong learning activities, including post-graduate education for some graduates;
- Involvement with professional and other service activities that contribute to industry and society.
Internships & Outcomes
Graduates from SNHU’s Mechanical Engineering program will have a thorough understanding of both the technical and economic issues faced by engineers and engineering projects. Students will be well prepared to enter the engineering field in an entry-level position, but will also have a firm grasp on the skills necessary to succeed at all levels.
SNHU embraces a multidisciplinary approach to education, and encourages opportunities for students to gain new skills and perspective by working with students in other disciplines, such as aeronautical engineering or electrical and computer engineering. Engineering is a field that spans many industries, and SNHU is committed to giving students the resources they need to prepare to enter any of them.
Program Outcomes
The following statements describe what students are expected to know and be able to do upon completion of the BS Mechanical Engineering program:
- Ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- Ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- Ability to communicate effectively with a range of audiences.
- Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and social contexts.
- Ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- Ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
Courses To Prepare You For Your Life & Career
SNHU's bachelor's in mechanical engineering program includes:
- General education courses
- Degree-specific courses
General Education Program
SNHU's required general education program, known as The Commons, aims to guide you toward success in not only your academic career, but your personal and professional life too.
Throughout the curriculum, you'll gain some of the most in-demand skills in today's workplace, including:
- Research and information analysis
- Diverse audience communication
- Critical thinking and ethical problem solving
- Leadership, emotional intelligence and collaboration
This expertise will prove practical, transferable and invaluable as you grow in your career and contribute positively to society.
Beyond foundational skill development, the general education program also provides the benefit of allowing you to explore a wide range of fields outside of your intended major.
View Full Curriculum in the Catalog |
---|
BS in Mechanical Engineering and concentrations |
Courses May Include | ||
---|---|---|
BS in Mechanical Engineering Campus | ||
EG 207 | Instrumentation & Measurements | This course is an introduction to the fundamental concepts, principles, procedures, and computations regarding modern instrumentation and measurement systems. Students will gain a sound understanding of a language (LabVIEW ) used to describe modern instrumentation, measurement, and control systems and an appreciation of the various types of systems in common use in industry. Students will use this software to create virtual instruments. Particular emphasis will be given to electrical, mechanical, flow, and thermal measurement systems. The course will also cover statistical analysis to evaluate the quality of measurements, standard methods of characterizing measurement results, and methods for characterizing measurement system response. The students work in teams to conceive-design-implement-operate a project incorporating multiple sensors and data acquisition and analysis. |
EG 316 | Electrical Circuits | This course provides fundamental knowledge to solve problems in electrical circuits. Topics to be covered include nodal and mesh analysis of circuits, using Kirchhoff's laws, superposition theorem, Thevenin and Norton equivalent circuits. Analysis of first and second order RC, RL, and RLC circuits. Software packages are employed throughout this course to simulate and analyze various electric circuits. |
EG 333 | Control Systems Analysis | This course provides students an opportunity to model, analyze, and design control systems. It includes mathematical modeling of linear systems for time and frequency domain analysis, transfer function and state variable representations for analyzing control system's performance and stability; and closed-loop control design techniques by frequency response, and root-locus methods. It also involves computer programming and simulation exercises. This course gives a basic understanding and analysis tools of various control systems used in the aeronautical, mechanical, and electric and electronics industries. |
MAT 325 | Calculus III: Multivariable Calculus | Many real-world applications of calculus in science, engineering, economics, and business employ functions with many variables. This course extends the basic concepts of single-variable calculus developed in MAT 225 and MAT 275 to functions of several variables. Topics include vectors, the geometry of space, vector-valued functions, motion in space, partial derivatives and multiple integrals. |
MAT 350 | Applied Linear Algebra | This is a first course in linear algebra and matrices. Topics include systems of linear equations, linear independence, matrices of linear transformations, matrix algebra, determinants, vector spaces, eigenvalues and eigenvectors. After mastering the basic concepts and skills, students will use their knowledge of linear algebra to model a selection of applied mathematics problems in business, science, computer science and economics. |
PHY 216 | Physics II | This is the continuation of PHY-215 with similar characteristics; i.e., it is a calculus based physics course and stresses problem-solving. Topics covered include temperature, thermal equilibrium, thermal expansion, calorimetry, periodic waves, mathematical descriptions of a wave, speed of transverse waves, sound waves in gases, electric charges, atomic structure, Coulomb's Law, Kirchhoff's rules, magnetic fields and flux, motion of charged particles in a magnetic field, reflection and refraction, total internal refraction, Fermat's Principles of Least Time, geometrical optics, refraction of spherical surfaces, lenses, and an introductory topic of modern physics. The required lab component of this course covers introductory methods and techniques of laboratory experimentation in topics covered in this course. Students learn about procedures for measuring physical quantities and methods for collecting and analyzing experimental data. Students are required to complete 12 experiments in areas such as Thermophysics, Sound and Waves, Electricity, Magnetism, Optics, or Atomic and Nuclear Physics. |
PHY 216L | Physics II Lab | This is the continuation of PHY-215 with similar characteristics; i.e., it is a calculus based physics course and stresses problem-solving. Topics covered include temperature, thermal equilibrium, thermal expansion, calorimetry, periodic waves, mathematical descriptions of a wave, speed of transverse waves, sound waves in gases, electric charges, atomic structure, Coulomb's Law, Kirchhoff's rules, magnetic fields and flux, motion of charged particles in a magnetic field, reflection and refraction, total internal refraction, Fermat's Principles of Least Time, geometrical optics, refraction of spherical surfaces, lenses, and an introductory topic of modern physics. The required lab component of this course covers introductory methods and techniques of laboratory experimentation in topics covered in this course. Students learn about procedures for measuring physical quantities and methods for collecting and analyzing experimental data. Students are required to complete 12 experiments in areas such as Thermophysics, Sound and Waves, Electricity, Magnetism, Optics, or Atomic and Nuclear Physics. |
Total Credits: 123 |
Campus Undergraduate Tuition
Our Manchester campus aims to keep tuition and related costs low for our students so that you can pursue your degree and your goals.
University Accreditation
Southern New Hampshire University is a private, nonprofit institution accredited by the New England Commission of Higher Education (NECHE) as well as several other accrediting bodies.
This program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET). Student and graduate data can be found below:
Program Enrollments (Fall 2024)
Mechanical Engineering (BS): 109
Graduates (Academic Year 2023-2024)
Mechanical Engineering (BS): 21